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ABSTRACT

In calculating the position vector of the Moon in on-board flight software,

one often begins by using a series expansion to (:alculate tile ecliptic latitude

and longitude of the Moon, referred to the mean ecliptic and equinox of (late.
One then performs a reduction for precession, followed by a rotation of the

position vector from the ecliptic plane to the equator, and a transformation
from spherical to Cartesian coordinates before finally arriving at the desired

result: equatorial J2000 Cartesian components of the hmar position vector. All

alternative method is developed here in which the equatorial J2000 Cartesian

components of the hmar position vector are calculated directly by a series ex-

pansion, saving valuable on-board computer resources.

INTRODUCTION

The calculation of the orbit of the Moon is one of the oldest problelns m

celestial mechanics. Its solution has had great historical significance as a test

of Newton's theory of gravity, with iim(:h of the early work on the problem

having been done by Newton himself in his discussion of tile two- and three-

body problems in Book I of the P'rincipia. In past (:enturies, accurate predictions

of the position of the Moon have also been of great practical interest as a

navigational aid for seafaring vessels, prompting the English government and
scientific so(:ieties to offer rewards for accurate hmar prediction tables. 1 The

resulting body of work developed during the eighteenth and nineteenth centuries
forms the basis of the hlnar theory still in use today.

Mo(tern hmar theory was first developed by G.W. Hill 2-5 in 1878, and later

expanded and improved by E.W. Brown 6 in 1896. The problem of lunar motion

addressed by Hill and Brown is a surprisingly difficult one; while the underlying

physical laws are very simple, the motion itself is quite (:omplex. r-ll The basi(:
motion of the Moon around Earth is affected by many strong perturbations such

as those due to the Smt, the other planets, and Earth's equatorial bulge. These

perturbations result in an advancement of the line of apsides of the lunar orbit.

a regression of the lin(" of nodes, aim other periodic perturbations superimposed
on these motions. For high ac(:uraey, it is ne(:essary to (:ompute hundreds of

periodic variations in the motion, although (:omputing only the Inost important
few terms results in a level of accuracy that is adequate for flight software use.

There have been two major reasons for calculating the position of the Moon

in spacecraft on-board (:omputer flight software. First, one often wishes to write
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flightsoftwareto preventthespacecraftfrompointingsensitiveinstrumentsat
the Moon,whichcanhaveanapparentmagnitudeasbrightas-12 at full
Moon.12Second,onemayrequiretheflightsoftwareto calculatestellaraberra-
tioncorrections.13Forhighaccuracy,thisrequirescalculatingthevelocityvector
of Earthwith respectto theEarth-Moonbarycenter,whichin turnrequiresa
calculationof the lunarvelocityvector.If theflightsoftwarecancalculatea
lunarpositionvector,thenthisvelocityvectormaybefoundbydifferentiating
thelunarpositionvectorwith respectto time.

REVIEW OF CURRENT MODELS

A number of approaches for calculating a lunar position vector are currently

used by spax:ecraft flight software. In the flight software for the Hubble Space
Telescope's DF-224 flight computer, for example, one finds the position of tile

Moon using a simple two-body model. The staadard two-body (:alculations 14

are modified somewhat to allow for the motion of the nodes and apsides of the

lunar orbit. A new set of orbital elements is uplinked from the ground every
few days to keep the error in the model to within acceptable limits, on the order

of 1°. Whih; this model is not highly accurate, it has the virtue of being very

fast a necessity for the 1970s-vintage flight computer.

An approach commonly u_d with more modern flight computers is based on
the low-precision formulae given in the Astronomical Almanac. 15"16 This model

is based on earlier work done by the Ahnanac Offices of the Uifited States and

United Kingdom iv and by Eckert, Walker, and Eckert, is all of which are based

on Brown's hmar theory. 6 In this model, one begins by using series expansions

to calculate the ecliptic longitude A, ecliptic latitude/_, and horizontal parallax

rr of the Moon, referred to the mean ecliptic and equinox of date:

218732 + 481 267?883 t

+6.°29 sin(477198.°85 t + 134.°9)

-1.°27 sin(-413 335?38 t + 259.°2)

+0?66 sin(890 534.°23 t + 235_)

+0721 sin(954 397?7(} t + 269.°9)

-0719 sin(35 999?05 t + 357.°5)

-0711 sin(966 404_)5 t + 186%) (1)

+5713 sin(483 202?03 t + 93?3)

+0.°28 sin(960 4(}0?87 t + 228?2)

-0?28 sin(6 003718 t + 31873)

-0717 sin(-4(}7 332?20 t + 21776 (2)
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7r ---- 0?9508
+070518cos(477198785t + 13479)

+0?0095 cos(-413 335?38 t + 259.°2

+0?0078 {:os(890 534?23 t + 235?7)

+0?0028 cos(954 397?70 t + 269?9) (3)

Tile horizontal parallax _ gives tile Earth-Moon distance r'

Re
r -- , (4)

sill 7r

where Re = 6378.140 km is the equatorial radius of Earth (IAU 1976 value). 19

Having found the lunar e(:lipti(: mean-of-date coordinates, one nmst then

perform a reduction for precession to epoch J2000 (2000 January 01 12:00:00
Barycentric Dynamical Time) to find the ecliptic J2000 coordinates (Ao, /50).

To sufficient pre(:ision, this may be found using the formula£ }°

/40 = /4-bsin(A+c) , (5)

A0 = A - a + b{:os(X + c) tan/40 , (6)

where the precession constants a, b, and c are given by

a = 17596 971 t + 070005086 t 2 , (7)

b = 07013(156 t - 0?000 0092 t 2 , (8)

(' = 57123 62 - 17155 358 t- 0_00 1964 t 2 , (9)

and where t is the time in Julian centuries ((:y) of 36 525 {lays froin J20(}(}:

t = (JOE - 245 1545.0)/36 525, (1(})

and JDE is th{; ephemeris Juliazl day.
The remaining step is to rotate the {:oordinates front the plane of the mean

ecliptic of J2000 to the me, an equator of J200(), and to convert from spherical

polar to Cartesian coordinates:

X = rcos/40(:osA0 , (11)

Y = r(cos/4osinAo{:oseo-sin/_osineo), (12)

Z = r(cos/_0sinA0sine0 +sin/_0cose0) , (13)

where r is given by Eq. (4) and e0 = 23 ° 26' 21(_448 is the obliquity of the

ecliptic at J2000 (IAU 1976 value). 21
This model has very good precision for on-board flight softwar(' use: the rms

error in the hmar position is about {}?11, with a maximum error of a}}out 0?35.
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A NEW MODEL

Many of the equations involved in computing the position of the Moon u_

ing the method just described involve what is essentially a coordinate transfor-

mation, from ecliptic meazl-of-date coordinates to equatorial J2000 Cartesian

coordinates. In this paper, I investigate the possibility of calculating the equa-

torial J2000 Cartesian coordinates directly by series expansions similar to Eqs.
(1-3), thus eliminating the need for performing the coordinate transformations

in on-board flight software.

We begin by assuming that each of the J2000 equatorial Cartesian coordi-

nates X,_ may be represented by Fourier sine series:

N_t

X,. = _ a_,_sin(c0,.m t-t-(_nm) ,
rn.=l

(14)

where X1 --- X, X2 - Y, and Xa =-- Z; N,_ is the order of the series for X,_.

We now need to find tile amplitudes a_m, frequencies co,_m, and phase constants

6,_m. This may be done by fitting these parameters to the DE200 ephemeris

model 2-%°-3using an exhaustive search. DE200 is an ephemeris model developed

at the Jet Propulsion Laboratory, and has been used to produce tables in the
Astronomical Almanac since 1984. It calculates Cartesian coordinates of Solar

System objects, referred directly to tile mean equator azld equinox of J2000.

For ea(:h coordinate, the terms of the series in Eq. (14) may be found one

at a time by simultaneously fitting the parameters a,.m, _,_m, aim 6,.m over a

grid of possible values to the DE200 model. An algorithm for accomplishine_;
this involves calculating the error ea_,e between the DE200 model and a "test

model" a sin(aJt + 6) using each combination of parameters a, aJ, and 6:

for a = er..into a.rnaz

for _ = O_'min tO OJrna: _

for 6 = 6_. to 6ma_

_2100 rX _t_--asin(_t+ 6)]2law6 = /---t=2000[ DE200_,)

where the Slllnlnation is over 216 points covering tile interval A.D. 2000 2100.

Tile smallest error ea_a found gives the best fit parameters a, u_, an(1 a. This

process may t)e repeated several times over suc(:essively smaller _-;ar(:h rang,'_s

and finer grid spacings in order to find more significant digits for the parameters.
Once a term has been found, it is subtracted from the DE200 data, and tile whole

process repeated on the remaining data to find tile next term in the series.

In tile model given by Eq. (14), we assume that the amplitudes a,.,_ are all

positive, so that amplitudes may be searched over a grid of values between 0 and

the maximum in the data set. The amplitudes may be assumed to be positive

without loss of generality by allowing the phase (:onstants 5,_,_ to he sear(:hed
over the entire range 0 to 27r: since -sin0 - sin(0 + _), any potential minus

sign in the amplitude is siinply absorbed a.s an extra _T radians adde(1 to the

pha._e (:onstant.
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Fourier Transform of Lunar X Coordinate
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Figure 1. Fourier spectrum of lunar X coordinate (A.D. 2000 2100).
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Determining a scarch range for the frequencies co.m is somewhat more com-

plicated than it is for tile amplitudes and phase constants. A search raalge for

co,_m may be determined by examining the peaks in the Fourier transform X,.(w)

of the DE200 data:

5.._._(w) = X.(t) e i_t dt , (15)

where X.,(t) is the position coordinate at time t,, and w is the angular frequency.

This Fourier transform rnay be calculated by using the DE200 model to compute

the hmar position vector at N discrete time points t,_, then finding the discrete

Fourier transform )(.,(cop):

N--1

"_-(_'_) = X_ x.(t_:) _,_ , (16)
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where X,_(tk) is the position vector at time point tk, Up = 27rp/tN is the angular
frequency, and p = 0, 1, 2,..., N - 1. For this study, N = 214 time points were

chosen over the time interval A.D. 2000-2100; tile mag]litude of the resulting
Fourier transform [)(l(_p)[ for X is shown in Figure 1. For each term in the

series expansion (Eq. 14), a search range is taken around one of the peaks in
the Fourier spectrum.

This exhaustive search process, which is essentially a curve fit to the DE200

model, required about one week of computer time to find each term in a series,

and some five months of computer time to find the complete solution to seven

terms per series. The final results are:

X = 383.0 sin (8399.685 t + 5.381)

+ 31.5 sin (70.990 t, + 6.169)

+ 10.6 sin (16 728.377 t + 1.453)

+ 6.2 sin (1185.622 t + 0.481)

+ 3.2 sin (7143.070 t + 5.017)

+ 2.3 sin (15613.745 t + 0.857)

+ 0.8 sin (8467.263 t + 1.010) x 106 m, (17)

y 351.0 sin (8399.687 t + 3.811)

+ 28.9 sin (70.997 t + 4.596)

+ 13.7 sin (8433.466 t + 4.766)

+ 9.7 sin (16728.380 t + 6.165)

+ 5.7 sin (1185.667 t + 5.164)

+ 2.9 sin (7143.058 t + 0.300)

+ 2.1 sin (15613.755 t + 5.565) x 106 m, (18)

Z = 153.2 sin (8399.672 t + 3.8(}7)

+ 31.5 sin (8433.464 t + 1.629)

+ 12.5 sin (70.996 t + 4.595)

+ 4.2 sin (16728.364 t + 6.162)

+ 2.5 sin (1185.645 t + 5.167)

+ 3.(} sin (1(}4.881 t + 2.555)

+ 1.8 sin (8399.116 t + 6.248) × 106 m, (19)

where all angles arc given in '_adian.s for convenience of use in software, t is the

time in Julian centuries from J2000 given by Eq. (10), and X, Y, and Z are

the Cartesian components of the hmar position vector, referred to the mean

equator and equinox of J2000. The terms are arranged in order of decrea.sing
contribution to tile reduction in the error of tile mo(M.
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Oneoftheprimaryadvantagesofthismodelisthatit allowsahmarephemeris
to beprogrammedin flightsoftwareusingverylittle (:ode. Using Eqs. (17-19),

an entire lunar ephemeris model may be programmed in just a few lines of C
code:

for (n=O; n<3; n++)

{

x[n] = 0.0;

for (m--O; m<7; m++)

x[n] += a[n] [m] *sin(w[n] [m] *t+delta[n] [m] ) ;

}

Calculations for the reduction for precessiom rotation from the ecliptic to the

equator, and transformation from spherical polar to Cartesian coordinates have

essentially been "absorbed" into tile series coefficients, and so do not need to

be performed explicitly.

DISCUSSION OF THE NEW MODEL

An examination of the frequencies in the terms of the AstrvnomicaI Almanac

model of Eqs. (1 3) and of the new model of Eqs. (17-19) gives some interesting

insights into the hmar motion. The frequencies in the A.strvnomical Almanac
model are all (:omputed as flmctions of the mean anomalies and mean longitudes

of the Sun and Moon, 16 while the frequencies in the model given by Eqs. (17 19)
are determined entirely by a curve fit. Wc examine the origins of some of the

more prominent frequencies in both models below.

Anomalistic Month

The (tominant term in the expressions for the ecliptic longitude A (Eq. 1)

azld horizontal parallax 7r (Eq. 3) have a frequency of 477198.85 (leg cy -1.

In deriving the Astronomical Almanac series, this frequency was computed as
the rate of change of the Moon's mean anomaly. Since the mean anomaly is

measured in the plane of the orbit from the perigee point, one (:omplete cycle

of the mean anomaly requires the same amount of time as the Moon's motion

from its perigee point to its next perigee. It (:omes as no surprise, then, that

this frequency of 477198.85 deg cy -1 is equal to one revolution per anomalistic
month of 27.554 550 clays, where an anomalistic month is the time required for

the Moon to move from perigee to perigee.

Draconic Month

For the ecliptic latitude fl (Eq. 2), the dominant term ha.s a frequency of
483202.03 (leg (:y-1. This was computed a_s the rate of change of tile Moon's

mean longitude, which is m(,asured from the vernal equinox to the as(:en(lin_

node along the e(:lipti(: plane, then from tile node to tile Moon along tile orbit

plane. The Moon will have fl = 0 only when it is at one of th(, nodes of the
orbit, and it will next have/t = 0 a_ain (crossing the node in th(' same dire(:tion)
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whenit returnsto thesamenodeagain.Wemightthereforeexpectthat the
dominaa_ttermintheexpressionfortheeclipticlatitudewillbethetimerequired
fortheMoonto movefromanorbitalnodebackto thesamenode.Indeed,the
frequencyof483202.03(legcy-1 isequalto onerevolutionperdraconic month

of 27.212 221 days, where a draconic month is the time required for the Moon
to move from an orbital node back to the same node.

Sidereal Month

In the series for X, Y, and Z in the new model (Eqs. 17 19), on the other

hand. the dominant terms all have a frequency of about 8399.685 tad cy -1,
which is equal to 1 revolution per sidereal r_,onth of 27.321662 days, where a

sidereal month is measured with respect to the fixed stars. This is a reflection of

the model having its coordinate system fixed in space (mean of J2000 equatorial

coordinates).

Motion of the Apsides

A comparison of the model of Eqs. (1 3) with the new model of Eqs. (17

19) shows that the new model includes an important term that does not appear
in the conventional model, having a frequency of about 70.99 rad cy -1. This

frequency reflects the motion of the line of apsides of the hmar orbit. The

expected frequency of this motion may be computed from the periods of the
anomalistic and sidereal months:

2;r 27r

sidereal too. anomalistic too.

27.321 662 d 27.554 g50 d

clays
× 36525 --

cv

70.9932 rad cy -1 (20)

in close agreement with the frequencies found using the curve fit.

ERROR ANALYSIS

The results shown in Eqs. (17-19) have been checked against the DE200

ephemeris model by using DE200 to generate hmar X, Y, and Z coordinates at

22o (over one million) time points between A.D. 2000 January 1 and A.D. 210(/

January 1, corresponding to roughly one point every fifty minutes for 100 years.

The model shown in Eqs. (17-19) wm_ run at the same time points, and the
results coinpared with the, DE200 results. This error analysis shows an rms

position error between DE200 and the new model of Eqs. (17 19) of 07341, and
a maximum error of 1_33.
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CONCLUSIONS

Threelunarephemerismodelsforon-boardflightsoftwareusehavebeen
discussed.A modifiedtwo-bodymodelis very fast,but is of lowprecision
andrequiresconstantmaintenancein theformof periodic:updatesof orbital
elementsfromtheground.Themodelcurrentlyin commonuse,whichisbased
on thelow-precisionformulaein theAstronamicaIAlmanac, is of very good

precision and will run indefinitely without ground intervention, but requires (:ode
to convert the calculated ecliptic mean-of-date coordinates to equatorial J2000

Cartesian coordinates. The method developed in this paper is of intermediate

precision, requires the least (:ode of tile three, and will also run indefinitely

without ground intervention. It may have applications for small missions where

computer resources are limited and its precision is acceptable.
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